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Kinetic model for the mechanical properties of 
polymer glasses 
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The deformation behaviour and the mechanical properties of polymer glasses are studied with 
the help of a kinetic model introduced previously. The model, which is based on the Eyring 
chemical activation rate theory, takes into account the role of the strong attractive forces 
between macromolecular chains as well as chain slippage through entanglements. Application 
to poly(methyl methacrylate) has allowed us to calculate the yield stress, craze length 
and fracture toughness and their dependence on testing conditions. The model also clearly 
illustrates the transition from crazing to shear yielding in polymer glasses as the density of 
entanglements is increased. 

1. In troduc t ion  
The fracture of polymer glasses is a very complex 
problem of great technological interest. Depending on 
the molecular weight, temperature, rate of deforma- 
tion and other testing conditions, these materials may 
deform through shearing, craze formation or a com- 
bination of both. The molecular processes controlling 
these various modes of deformation are, however, not 
very well understood. 

Several models have been proposed to describe the 
deformation behaviour of polymer glasses. The 
theories of Gent [1] and of Argon and Hannoosh [2] 
assume that crazing is formed by cavitation under 
hydrostatic tension in the polymer. Equations for 
describing the stress-strain relationships in polymer 
glasses have been proposed by Haward and Thackray 
[3] and Brown and Windle [4]. A finite-element analy- 
sis of craze deformation, assuming linear elastic 
behaviour, has been proposed by Bevan [5]. All these 
approaches, however, provide only a phenomenologi- 
cal or static representation of the deformation behav- 
iour and they neglect the importance of the molecular 
weight and the entanglement network in polymer 
glasses. Recent studies [6-8], however, have demon- 
strated the profound effect of entanglements upon the 
mechanical properties of glassy polymers. 

In a recent series of publications [9, 10] we have 
developed a new comprehensive, kinetic model for the 
study of the effect of molecular weight and entangle- 
ment density on the stress-strain curves and defor- 
mation behaviour of flexible polymers. In this 
approach, the polymer is represented by a loose 
entanglement network whose molecular chains are 
also tied together through numerous attractive bonds 
which provide the initial stiffness of the material. The 
model is extended here to a detailed study of the 
morphological changes occurring upon tensile defor- 
mation of glassy polymers. The effects of molecular 
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weight and temperature on the toughness of these 
materials are also investigated. 

2. Model  
In the model (Fig. la), the polymer glass is represented 
by a dense array of entangled macromolecules which 
have a random coil configuration [11]. The heavy 
black circles represent entanglement points whereas 
the dotted lines denote the strong intermolecular 
interactions between molecules. These interactions 
provide the initial stiffness to the material [12]. For the 
purpose of convenience, our calculations are based on 
the more schematic representation given in Fig. lb in 
which the heavy solid lines now denote chain vectors 
between entanglements, chain ends being indicated by 
broken solid lines. Individual attractive bonds have 
been also replaced by "overall" bonds (dotted lines) 
joining each entanglement point to its neighbours. 

We start with a regular array of entanglements, as 
depicted in Fig. I b. This array is filled in with macro- 
molecular chains having a prescribed molecular 
weight distribution. This is performed using a step-by- 
ste p construction described elsewhere [9, 10, 13, 14]. 
The network of chains is then deformed along the y 
axis at a constant temperature and strain rate 4. 
Upon tensile deformation, the following processes are 
allowed for in the model. 

2.1. Breakage of the intermolecular 
attractions between chains 

This bond breaking occurs in the early stages of the 
deformation process at strain values lower than 2%. 
The process is performed according to the kinetic 
theory of fracture [15], i.e. at a rate 

v = r exp [--(U - fla)/kT] (1) 

In Equation l, ~ is the thermal vibration frequency; U 
and fl are, respectively, the activation energy and 
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Figure 1 (a) Network representation of a polymer glass. 
The heavy black circles represent entanglement points, 
whereas the dotted lines denote the attractive forces 
between chains. (b) More schematic representation of 
the network in (a). The heavy solid lines denote chain 
vectors between entanglements, chain ends are indi- 
cated by broken solid lines. Individual attractive 
bonds have also been replaced by "overall" bonds 
(dotted lines) joining each entanglement point to its 
neighbours. 

volume, a is the local stress a = Ke, where e is the 
local strain and K the elastic constant for the attractive 
bond. These bond breakings lead to a release of the 
underlying chain strands which are now to support the 
external load. These chains, now free of inter- 
molecular attractions, enter a rubbery state (see 
Equation 2 later) and start to extend between 
entanglements. As their stress increases, slippage of 
chain strands through entanglements sets in (Process 
2 below). 

2.2. Slippage of chains through 
entanglements 

We assume that this occurs at a rate having the same 
functional form as Equation 1 but with different 
values for the activation energy U and activation 
volume ft. Now a represents the difference in stress in 
the two strands of a chain separated by an entangle- 
ment. According to the classical theory of rubber 
elasticity [16], the stress on a chain strand having a 
vector length r is 

a = c~q ~ ' ( r /n l )  (2) 

where n is the number of  statistical chain segments and 
l is their length. 2 ' -  ~ is the inverse Langevin function 
and ~ = (nl/2/3)K ' where K'  is the elastic modulus of 
the polymer in the rubbery region. In accordance with 
experimental data for flow in paraffins [16], we assume 
that the chain length capable of coordinated move- 
ment at a rate given by Equation 1 is of  the order of  
1 to 2 statistical segments. If  slippage of chains 
through entanglements is too slow, i.e. at low tem- 
peratures or high strain rates, chain strands between 
entanglements will reach maximum extension and 
break (Process 3 below). 

2.3. Breakage of chain strands at maximum 
elongation 

This process occurs when the draw ratio for a chain 
strand exceeds n I/2 where n is the number of statistical 
segments for that strand. 

The above three processes are performed with the 
help of a Monte Carlo procedure [9, 10, 17] which, at 
regular short time intervals At, also relaxes the 
entanglement network to its minimum energy con- 

figuration. This is performed using a series of fast 
computer algorithms [17] which steadily reduce the 
net residual force acting on each entanglement. That  
relaxation procedure leads to displacements of the 
nodes along the tensile y axis. After that step, the 
sample is further strained by a small constant amount 
equal to iAt. The Monte Carlo processes of attractive 
bond breaking, chain slippage and fracture are then 
restarted for another time interval At, and so on until 
the sample breaks. 

Application of the above model to tensile deforma- 
tion of poly(methyl methacrylate) (PMMA) was done 
using the following parameter values: 

2 .3 .  1. A t t r a c t i v e  b o n d  b r e a k i n g  
Values for the activation energy and volume are dif- 
ficult to determine experimentally. We took U = 
25kcalmol -] (105kJmol -~) /? = (0.82nm) 3.. These 
values were chosen in order to give a 2 to 3% strain at 
the yield point, together with a yield stress of around 
80 MPa at room temperature [12]. The initial Young's 
modulus K = 3 GPa. 

2.3.2. Chain slippage 
The molecular weight between entanglements 
M e = 4700 [18] and the number n of statistical seg- 
ments per chain strand equals 7, which leads to a 
maximum draw ratio ~-~ax = 7 m =  2.6 [19]. The 
modulus of PMMA in the rubbery regime, K', is 
about 2.75 MPa [20, 21]. We chose U = 19 kcalmol -t 
(80kJmol  -]) with /? = (0.6nm) ~ [9, 10]. The latter 
value is of the order of  magnitude of  a statistical chain 
segment. 

3. R esu l t s  and d i s c u s s i o n  
The model described above has been used to study the 
factors controlling the deformation behaviour of 
PMMA samples in tension. 

Fig. 2 shows the calculated dependence of the yield 
stress on the rate of  deformation at two different 
temperatures. Our stress values (open circles) are for 
a monodisperse PMMA with M = 165000. The 
results indicate an important decrease of the yield 
stress with a decrease in the rate of deformation. Our 
results are in reasonably good quantitative agreement 
with experimental data reported by Haward [22]. That 

*These values are not for single bonds but for "overall" effective bonds linking every entanglement point to its neighbours 19, 10]. 
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Figure 2 Dependence of the yield stress of PMMA on the rate of 
deformation at two different temperatures. Open circles are values 
calculated with the help of the model for a monodisperse polymer 
with M -  165000. Continuous lines denote experimental data 
reported by Haward [22]. 

agreement leads to strong support to our choice of 
values for the model's parameters. 

We now turn to a detailed study of the deformation 
behaviour of notched PMMA samples in tension. 
Fig. 3a shows a typical notched specimen prior to 
deformation. The initial notch was obtained by break- 
ing attractive bonds and molecular chain strands in 
the centre of the undeformed specimen within a small 
sphere having a diameter equal to 3% of the total 
sample width. Fig. 3b shows a typical deformation 
scheme obtained for monodisperse PMMA with 
M = 165 000 at 22 ~ C. The figure shows the presence 
of a very thin sheet of  deformed polymer extending 
transversally from the initial central notch. That 
so-called craze structure is made of extended polymer 
fibrils separated by voids. Further investigation shows 
that these fibrils (for the high molecular weight con- 

sidered) have a local draw ratio around 2.4, quite close 
to the maximum value 71/2, in good agreement with 
experimental observation [19]. The voids, on the other 
hand, are created through the rupture of fibrils and 
retraction of their broken molecular chains. As the 
sample in Fig. 3b is further deformed, some of the 
fibrils will grow by drawing new polymer from the 
craze interface (craze thickening). Most of the fibrils, 
however, will progressively weaken either through 
disentanglement of  chain strands or through breakage 
of chains at maximum extension. This leads to an 
enlargement of the voids, starting with those closest to 
the original notch (Fig. 3c). In this way, the overall 
craze grows weaker and weaker leading ultimately to 
catastrophic failure of the sample. 

Fig. 3d shows the mode of deformation obtained 
for a glass, like poly(phenylene oxide), having a much 
larger density of  entanglements. That change was 
obtained by tripling our initial value for the rubbery 
modulus K '  (see Equation 2), which is proportional to 
the density of  entanglements [16]. Comparing Figs 3b 
and 3d, which were obtained for the same value of  the 
external strain, we observe a transition from a crazing 
to a shearing mode of deformation. The results for 
Fig. 3d do not show any chain breaking. Rather, upon 
increase of the external strain, the deformed zone 
thickens by drawing new polymer from the interface 
(Fig. 3e). 

We now turn to calculate the craze length in 
PMMA with the help of the model. Since our simula- 
tions are limited by the memory and time available on 
the computer (IBM 3081D), the maximum sample 
width that can be reasonably handled on the computer 
is of the order of  1000nm. That length is well below 
the experimentally observed craze length and the lat- 
ter has therefore been estimated as follows. A series of 
short crazes of different lengths have been generated 
on the computer around small central cracks and 
strained at a constant rate of deformation. At some 
critical value of the external strain, these crazes reach 

Figure 3 Deformation schemes obtained 
for notched PMMA samples in tension 
(M = 165000). (a) Before deformation; 
(b) PMMA at 15% external strain; (c) 
same specimen as in (b) but at 22.5% 
external strain; (d) polymer glass at 15% 
external strain and a density of entangle- 
ments three times higher than in (b) and 
(c); (e) same specimen as in (d) but at 
22.5% external strain. Temperature was 
set equal to 22 ~ C and rate of deformation 

= 0.01 sec -l. The network has 50 nodes 
along the tensile y axis and 200 nodes in 
the transverse x direction. Assuming that 
the average distance between entangle- 
ments is of the order of 3 nm, the length of 
the samples along the horizontal x axis is 
of the order of 1 #m. The dark lines within 
the deformed regions in (b) to (e) denote 
extended chain strands. 
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the yield stress at their tip and start propagating. 
Values of  the craze opening near the crack tip are 
then recorded and plotted against initial craze length 
(Fig. 4). We then make the assumption that the length 
of those propagating crazes will reach a stationary 
value when propagation at the craze tip is compen- 
sated by fibril breakage near the crack tip, i.e. when 
the craze opening reaches its maximum value. One 
shows easily that that maximum strain value is given 
by 13ma x = nU=3 I/2 -- 1 = 3.58, where n = 7 is the 
number of  statistical segments between entangle- 
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Figure 5 Calculated dependence of the fracture surface energy Gr on 
the (weight-average) molecular weight for PMMA at two different 
temperatures: (o) 22~ and (O) 60~ (1 ergcm -2 = 10-3j m 2). 
Continuous curves are for monodisperse samples; dashed curves are 
for polydisperse samples with Mw/M ~ = 3 to 4. The rate of strain 
was set equal to 0.01 s e c  - l .  We took in Equation 4 r~ = 100#m, 
from experimental measurements reported by Kramer [25], 
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Figure 4 Dependence  of  the m a x i m u m  engineer ing s t ra in  

in craze on (hal f )  the craze length.  N e t w o r k s  of  up  to 

400 z 100 nodes  were used in the calcula t ions .  Tem-  

pera ture  was  set equal  to 22 ~ C and  rate  of  de fo rma t ion  

~, = 0.01 sec i. 
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ments, whereas the factor 3 I/2 comes from geometrical 
considerations [9, 10]. Extrapolation of the results of  
Fig. 4 to %~x = 3.58 leads to a calculated craze length 
around 12 #m, a value in good agreement with other 
estimations [23]. Note that our value probably con- 
stitutes a lower bound since its derivation neglects the 
possibility of  slippage which would lead to an increase 
i n  g m a x .  

We now turn to present our results for the depen- 
dence of the fracture surface energy, G~, on tem- 
perature and molecular weight, Go has been calculated 
using 

a t  = K~/F~ (3) 

in which the fracture toughness Kc is obtained from 
the Dugdale plastic zone model [24] 

K~ = (8/n)rr 2 (4) 

In Equation 4, re is the craze length, whereas ac is the 
maximum craze stress, as obtained with the help of  
our model. 

Fig. 5 shows our calculated results for the depen- 
dence of  Gc on (weight-average) molecular weight at 
two different temperatures. We took, in Equation 3, 
E = 3 GPa  at 20 ~ C and 2 GPa at 60 ~ C, respectively. 
As a general result, the model shows a drop in Gc when 
Mw falls below 105. That  observation is in accordance 
with a wealth of experimental data (see e.g. [26]). Our 
results for monodisperse samples (solid lines) also 
indicate a sharpe decrease in Gc with temperature for 
Mw < 40 000. That  prediction is in good agreement 
with recent experimental observations [27]. Further 
investigation of our computer results shows that the 
decrease in Go with temperature is due to chain 
slippage through entanglements, a process which is 
exacerbated at low molecular weights. We have also 
studied the effect of the molecular weight distribution 
on Go. To this end, we have simulated on the computer  
the deformation behaviour of  a series of  P M M A  
glasses having a log-normal molecular weight distri- 
bution with Mw/Mn = 3 to 4. Our G~ values for these 



polydisperse samples are presented in Fig. 5 (dashed 
lines). The results show a sharp decrease in toughness 
with polydispersity. Our Go values become indepen- 
dent of polydispersity only for (weight-average) mol- 
ecular weights higher than 200 000. 
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